Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.

Identifieur interne : 000182 ( Main/Exploration ); précédent : 000181; suivant : 000183

Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.

Auteurs : Olga Gorelenkova Miller [États-Unis] ; John J. Mieyal [États-Unis]

Source :

RBID : pubmed:29183158

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Glutaredoxin (Grx)1, an evolutionarily conserved and ubiquitous enzyme, regulates redox signal transduction and protein redox homeostasis by catalyzing reversible S-glutathionylation. Grx1 plays different roles in different cell types. In Parkinson's disease (PD), Grx1 regulates apoptosis signaling in dopaminergic neurons, so that loss of Grx1 leads to increased cell death; in microglial cells, Grx1 regulates proinflammatory signaling, so that upregulation of Grx1 promotes cytokine production. Here we examine the regulatory roles of Grx1 in PD with a view toward therapeutic innovation. Recent Advances: In postmortem midbrain PD samples, Grx1 was decreased relative to controls, specifically within dopaminergic neurons. In Caenorhabditis elegans models of PD, loss of the Grx1 homologue led to exacerbation of the neurodegenerative phenotype. This effect was partially relieved by overexpression of neuroprotective DJ-1, consistent with regulation of DJ-1 content by Grx1. Increased GLRX copy number in PD patients was associated with earlier PD onset; and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-α in mouse and human brain samples. In vitro studies showed Grx1 to be upregulated on proinflammatory activation of microglia. Direct overexpression of Grx1 increased microglial activation; silencing Grx1 diminished activation. Grx1 upregulation in microglia corresponded to increased neuronal cell death in coculture. Overall, these studies identify competing roles of Grx1 in PD etiology.

CRITICAL ISSUES

The dilemma regarding Grx1 as a PD therapeutic target is whether to stimulate its upregulation for neuroprotection or inhibit its proinflammatory activity.

FUTURE DIRECTIONS

Further investigation is needed to understand the preponderant role of Grx1 regarding dopaminergic neuronal survival.


DOI: 10.1089/ars.2017.7411
PubMed: 29183158
PubMed Central: PMC6391617


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.</title>
<author>
<name sortKey="Gorelenkova Miller, Olga" sort="Gorelenkova Miller, Olga" uniqKey="Gorelenkova Miller O" first="Olga" last="Gorelenkova Miller">Olga Gorelenkova Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:29183158</idno>
<idno type="pmid">29183158</idno>
<idno type="doi">10.1089/ars.2017.7411</idno>
<idno type="pmc">PMC6391617</idno>
<idno type="wicri:Area/Main/Corpus">000284</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000284</idno>
<idno type="wicri:Area/Main/Curation">000284</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000284</idno>
<idno type="wicri:Area/Main/Exploration">000284</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.</title>
<author>
<name sortKey="Gorelenkova Miller, Olga" sort="Gorelenkova Miller, Olga" uniqKey="Gorelenkova Miller O" first="Olga" last="Gorelenkova Miller">Olga Gorelenkova Miller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Age of Onset (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Dopaminergic Neurons (metabolism)</term>
<term>Down-Regulation (MeSH)</term>
<term>Gene Dosage (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Mesencephalon (metabolism)</term>
<term>Microglia (metabolism)</term>
<term>Parkinson Disease (genetics)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Protein Deglycase DJ-1 (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Dosage génique (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maladie de Parkinson (génétique)</term>
<term>Maladie de Parkinson (métabolisme)</term>
<term>Microglie (métabolisme)</term>
<term>Mésencéphale (métabolisme)</term>
<term>Neurones dopaminergiques (métabolisme)</term>
<term>Protein deglycase DJ-1 (métabolisme)</term>
<term>Régulation négative (MeSH)</term>
<term>Âge de début (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Maladie de Parkinson</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dopaminergic Neurons</term>
<term>Glutaredoxins</term>
<term>Mesencephalon</term>
<term>Microglia</term>
<term>Parkinson Disease</term>
<term>Protein Deglycase DJ-1</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Maladie de Parkinson</term>
<term>Microglie</term>
<term>Mésencéphale</term>
<term>Neurones dopaminergiques</term>
<term>Protein deglycase DJ-1</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Age of Onset</term>
<term>Animals</term>
<term>Down-Regulation</term>
<term>Gene Dosage</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Dosage génique</term>
<term>Humains</term>
<term>Régulation négative</term>
<term>Âge de début</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Glutaredoxin (Grx)1, an evolutionarily conserved and ubiquitous enzyme, regulates redox signal transduction and protein redox homeostasis by catalyzing reversible S-glutathionylation. Grx1 plays different roles in different cell types. In Parkinson's disease (PD), Grx1 regulates apoptosis signaling in dopaminergic neurons, so that loss of Grx1 leads to increased cell death; in microglial cells, Grx1 regulates proinflammatory signaling, so that upregulation of Grx1 promotes cytokine production. Here we examine the regulatory roles of Grx1 in PD with a view toward therapeutic innovation. Recent Advances: In postmortem midbrain PD samples, Grx1 was decreased relative to controls, specifically within dopaminergic neurons. In Caenorhabditis elegans models of PD, loss of the Grx1 homologue led to exacerbation of the neurodegenerative phenotype. This effect was partially relieved by overexpression of neuroprotective DJ-1, consistent with regulation of DJ-1 content by Grx1. Increased GLRX copy number in PD patients was associated with earlier PD onset; and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-α in mouse and human brain samples. In vitro studies showed Grx1 to be upregulated on proinflammatory activation of microglia. Direct overexpression of Grx1 increased microglial activation; silencing Grx1 diminished activation. Grx1 upregulation in microglia corresponded to increased neuronal cell death in coculture. Overall, these studies identify competing roles of Grx1 in PD etiology.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>The dilemma regarding Grx1 as a PD therapeutic target is whether to stimulate its upregulation for neuroprotection or inhibit its proinflammatory activity.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>Further investigation is needed to understand the preponderant role of Grx1 regarding dopaminergic neuronal survival.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29183158</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.</ArticleTitle>
<Pagination>
<MedlinePgn>1352-1368</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2017.7411</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE">Glutaredoxin (Grx)1, an evolutionarily conserved and ubiquitous enzyme, regulates redox signal transduction and protein redox homeostasis by catalyzing reversible S-glutathionylation. Grx1 plays different roles in different cell types. In Parkinson's disease (PD), Grx1 regulates apoptosis signaling in dopaminergic neurons, so that loss of Grx1 leads to increased cell death; in microglial cells, Grx1 regulates proinflammatory signaling, so that upregulation of Grx1 promotes cytokine production. Here we examine the regulatory roles of Grx1 in PD with a view toward therapeutic innovation. Recent Advances: In postmortem midbrain PD samples, Grx1 was decreased relative to controls, specifically within dopaminergic neurons. In Caenorhabditis elegans models of PD, loss of the Grx1 homologue led to exacerbation of the neurodegenerative phenotype. This effect was partially relieved by overexpression of neuroprotective DJ-1, consistent with regulation of DJ-1 content by Grx1. Increased GLRX copy number in PD patients was associated with earlier PD onset; and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-α in mouse and human brain samples. In vitro studies showed Grx1 to be upregulated on proinflammatory activation of microglia. Direct overexpression of Grx1 increased microglial activation; silencing Grx1 diminished activation. Grx1 upregulation in microglia corresponded to increased neuronal cell death in coculture. Overall, these studies identify competing roles of Grx1 in PD etiology.</AbstractText>
<AbstractText Label="CRITICAL ISSUES">The dilemma regarding Grx1 as a PD therapeutic target is whether to stimulate its upregulation for neuroprotection or inhibit its proinflammatory activity.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS">Further investigation is needed to understand the preponderant role of Grx1 regarding dopaminergic neuronal survival.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gorelenkova Miller</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mieyal</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>I01 BX000290</GrantID>
<Acronym>BX</Acronym>
<Agency>BLRD VA</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS085503</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.2.-</RegistryNumber>
<NameOfSubstance UI="C105131">PARK7 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.2.-</RegistryNumber>
<NameOfSubstance UI="D000071617">Protein Deglycase DJ-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017668" MajorTopicYN="N">Age of Onset</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059290" MajorTopicYN="N">Dopaminergic Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="N">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008636" MajorTopicYN="N">Mesencephalon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017628" MajorTopicYN="N">Microglia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071617" MajorTopicYN="N">Protein Deglycase DJ-1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">neuroinflammation</Keyword>
<Keyword MajorTopicYN="Y">neuroprotection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29183158</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2017.7411</ArticleId>
<ArticleId IdType="pmc">PMC6391617</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>JAMA Neurol. 2014 Apr;71(4):499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol. 2002 Feb;249(2):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Neurodegener. 2012 Jan 13;1(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2009 Oct;23(10):3263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Mar 30;49(12):2715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2012 Oct 09;4(10):1399-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23201762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jul 15;13(2):127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20014998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2006 Oct-Nov;387(10-11):1385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2001;103(2):373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11246152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 3;285(49):38641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Sep 17;28(38):9463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmune Pharmacol. 2007 Jun;2(2):140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18040839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2006 Feb 1;83(2):256-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 May;1813(5):878-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2015 May;56(5):2821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25788646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2013;2013:683920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Aug 16;55(32):4519-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26894491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Mol Brain Res. 2005 Mar 24;134(1):18-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 22;284(21):14245-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Feb 2;100(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):40354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Am Thorac Soc. 2016 Mar;13 Suppl 1:S97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27027965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2016 Mar 24;13(1):67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27012931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Jun;6(3):337-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17328689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 2009 Mar;32(3):332-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2000 Jun 23;86(12):1252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurol. 2016 Dec;29(6):727-734</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2012 Jan;45(1):529-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21971528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Feb;28(4):1338-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 1998 Nov;54(5):789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9804614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2009 Dec;41(6):473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 23;282(47):34479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17895242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 1987;33 Suppl 1:18-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3595474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 28;274(22):15857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2012 Aug;4(4):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22611253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Res. 2008;41(3):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jun 18;3(6):e2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jun 15;12(12):1339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19938943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2013 Jun 28;547:16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23669642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2014 Feb 15;189(4):463-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24325366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:305-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2862840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):543-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1994 Dec 1;180(6):2297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7964502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Oct;87:312-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26164633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1676-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12):8633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18754-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18000063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2010 Jan;56(1):128-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1998 Jan 1;779(1-2):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9473560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 1995 Nov;136(1):44-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 30;10(9):e0138535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26422139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2015 Oct;138(Pt 10):3030-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26133660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1102-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2014 Apr 15;339(1-2):64-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24495872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Sci Monit. 2004 Dec;10(12):RA287-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15567992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 2;273(1):392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9417094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2002 Oct;83(1):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12358740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2011 Sep 29;192:285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2015 Jun;150:81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25596317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 Oct;16(10):1303-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19662025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1994 Sep;36(3):348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8080242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2003 Apr;10(8):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stereotact Funct Neurosurg. 2012;90(2):104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Dec 20;25(18):967-982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27224303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2015 Sep;89(9):1439-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25827102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2012 Jul;27(8):947-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22693036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2010 Aug;16(4):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2002 Jun;8(3):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12061506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1994 Oct 24;180(2):147-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7700568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2008 Jun 1;75(11):2234-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 24;279(39):40622-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Platelets. 2016 Nov;27(7):694-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27096416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2016 Jan 6;36(1):65-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26740650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Neurobiol. 2015;124:247-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2001 Mar;101(3):249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11307625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 24;278(43):42588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm Suppl. 2006;(70):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17017532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microsc Res Tech. 2005 Jul;67(3-4):156-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16104002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2004 Jul;4(7):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Mar 1;24(5):1322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 May 1;52(9):1844-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 1999 Dec;100(1-2):124-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10695723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2009 Feb;87(2):576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18803299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>eNeuro. 2017 May 26;4(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28560316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9207126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2010 Feb 15;316(4):649-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 25;278(17):14607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2010 Jul;116(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mov Disord. 2015 Dec;30(14):1901-1911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26573698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Rev. 2008 Aug;58(2):453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e39132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2000 Jul 1;61(1):10-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 May 1;8(9):1304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2005 Feb;125(2):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Apr;17(6):717-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):930-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2011 Oct 17;24(10):1644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21815648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neural Transm (Vienna). 1997;104(6-7):661-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9444566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2016 Sep;55(3):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27035878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2014 Dec;72 Pt A:61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24780498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Jan 28;29(4):1011-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1998 May;12(7):561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2006 Oct 25;7:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2009 May;43(5):431-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19347761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Sep;74:118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 1999;22:123-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10202534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Aug 1;373(Pt 3):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12723971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Gorelenkova Miller, Olga" sort="Gorelenkova Miller, Olga" uniqKey="Gorelenkova Miller O" first="Olga" last="Gorelenkova Miller">Olga Gorelenkova Miller</name>
</region>
<name sortKey="Mieyal, John J" sort="Mieyal, John J" uniqKey="Mieyal J" first="John J" last="Mieyal">John J. Mieyal</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000182 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000182 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29183158
   |texte=   Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29183158" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020